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IDENTIFICATION OF BOUNDARY THERMAL PERTURBATIONS USING 

SPECTRAL FUNCTIONS 

Yu. M. Matsevityi, A. P. Slesarenko, 
and O. S. Tsakanyan 

UDC 536.24 

A method is proposed for solving the external inverse heat-conduction problem in 
a parametric formulation. 

The heat-transfer boundary conditions at the surface may be determined from available 
information on the temperature inside an object, which forms a topic of the external inverse 
heat-conduction problem (IHP), by various methods [1-4], the application of which depends on 
the formulation of the IHP, the required accuracy of solution, and the presence of corre- 
sponding computational resources. 

If the IHP is regarded as a control problem, in which the role of the control object is 
played by its model, the boundary conditions are taken as the input quantities, and the tem- 
peratures at the observation points as the output quantities, it is possible to speak of a 
correlation between the distributed input and output quantities, which may be expressed in 
the form of transfer functions or influence functions (the latter term, in our view, more 
closely corresponds to the physical meaning of this correlation). 

In a particular case, determining the transfer functions of objects with distributed 
parameters (DP objects) consists in solving the heat-conduction equation for a single input 
perturbation at one of the boundary points, with zero perturbations at the other points of 
the surface [5]. The distributed transfer function from a single source at the given bound- 
ary point to a finite set of internal points of the given object is obtained here. 

If, for each point boundary perturbation with amplitude fi in the grid model of the ob- 
ject, the distributed function Wi(x , y, z) is determined, where i = i, 2, ..., N, the W i 
functions may be used to write the relation between its temperature and all the input bound- 
ary perturbations for all its internal points, under the condition that the DP object is 
linear 

N 
T(x, y, z )= "~ f~W~ (x, y, z). 

~=1 

In this case, solving the IHP reduces to determining the amplitudes fi. Unique deter- 
mination of the function f(x, y, z) entails having information on the temperatures at N in- 
ternal points of the DP object and solving a system of N linear algebraic equations 

N 

T~-- EhWu; ]=1 '  2 . . . . .  N, 

where Tj* are the temperatures at the observation points of the DP object. 

Institute of Mechanical-Engineering Problems, Academy of Sciences of the Ukrainian SSR, 
Kharkov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 3, pp. 480-486, Septem- 
ber, 1987. Original article submitted June 9, 1986. 

1090 0022-0841/87/5303-1090512.50 �9 1988 Plenum Publishing Corporation 



Usually, in solving practical problems, limited information on the temperature values at 
the observation points is available to the investigator, and the input perturbations are de- 
termined in the form of parameters of the piecewise-constant approximation, which is the least 
precise of all those employed. 

To increase the accuracy of IHP solution, the number of observation points must be in- 
creased, which leads to complication and increased expense of the experiment, to the need to 
store a large volume of numerical information, and to complexity associated with its treat- 
ment and analysis, to say nothing of the fact that increasing the volume of information and 
improving its quality are by no means always possible. 

With the aim of eliminating these deficiencies, the following approach is proposed. If, 
for example, the distribution function of the input perturbations of the i-th section of the 
boundary is approximated by an n-th-order polynomial 

n i 

[~(~') = Z aij~/' i = 1, 2 . . . . .  m; / = O, 1 . . . . .  n, ( i )  
f=O 

and the coefficients of this polynomial aij are taken as the parameters of the boundary per- 
turbations, the temperature at any internal point of the object may be defined as 

and the  f u n c t i o n  Wij i s  t he  s p e c t r a l  i n f l u e n c e  f u n c t i o n ,  s i n c e  i t  c h a r a c t e r i z e s  t he  r e a c t i o n  
o f  t he  o b j e c t  n o t  t o  the  t o t a l  b o u n d a r y  p e r t u r b a t i o n  bu t  o n l y  to  i t s  s p e c t r a l  component .  The 
e l e m e n t s  o f  t he  s e q u e n c e  {r  k = O, . . . ,  n ,  a r e  chosen  as  the  s p e c t r a l  components  o f  t h e  
b o u n d a r y  p e r t u r b a t i o n s  i n  Eq. ( 1 ) .  

The s p e c t r a l  f u n c t i o n s  of  t he  b o u n d a r y  p e r t u r b a t i o n s  a r e  d e t e r m i n e d  as f o l l o w s .  On a l l  
b o u n d a r y  s e c t i o n s ,  e x c e p t  the  i - t h ,  z e r o  p e r t u r b a t i o n s  a r e  s p e c i f i e d  ( f o r  the  c a s e  of  bound-  
a r y  conditions of the first kind). Applying unit distributed perturbation to the i-th sec- 
tion of the boundary, for which the spectral influence functions are being determined, the 
Laplace equation is solved, and as a result the spectral influence function Wio(x, y) is 
determined. In determining Wix(x~ y), it may be assumed that the distributed input perturba- 
tion is known in the form of the function fix = ~; in determining Wi2(x, y), that it is known 
in the form of the function fi2 = $2; and so on. An analogous procedure is performed for the 
other sections of the boundary. After determining all the spectral influence functions, the 
relation between the output temperature potential and the input boundary perturbations may be 
written in parameterized form for any internal point of the object, as follows 

m ni 

T(x, y)= ~ ~ a,jWu(x , ~. (2) 
i=I /=0 

Equation (2) may be used to solve problems in both the direct and inverse formulation. In 
the second case, the input parameters aij must be determined; they are found from the solu- 
tion of the system of linear algebraic equations 

m ni 

T (xl, y,)= ~ ]~ auWu(x,, YO, 
~=l i=0 (3) 

m n i  

T ~ ,  ym~)= ~'~ ~=~ auWu (xm,. Ym.). 
~ =  I 1 = 0  

If the number of observation points N exceeds the number of initial parameters, the 
point least-squares method must be used for Eq. (2). According to this method, the measure 
of the deviation 

N m rt i 

S =  1 ~ I  j ~ O  
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is a function of the coefficients aij, which must be chosen so that its value is a minimum. 
Determining the partial derivatives of I with respect to each parameter and equating them 
to zero, a system of mn equations is obtained for determining mn unknowns 

N N 

al l  X W~l(Xs'  .~?s)+a12 x ~ l l (Xs ,  Y,)~712(xs, Y s ) + - - -  
S= 1 S= 1 

N N 

-JI-arnnX ~711(Xs' Ys) Wnzn(Xs' Y ' ) =  Z T(xs' V s ) ~ l l ( X s '  Ys), 
S= 1 $~ 1 

N N 

,+,. ~ w,, (x+, v+) w,++ (.++, w) + ,,,,, ~ w~:+ (x+, y+) + . . .  

N N 

+ a,,,,~ X Wa. (x+, y.) W,,,,~ (x., y+) = X T (x~, y.) W~2 (x+, y.), 
S~ 1 S= I 

N N 
a~ ~ w~ (x., v+) w,.. (x+, y+) + a~, ~ w,.. (x+, y+) w~, (x~, w) + . . .  

S= 1 S= 1 
N N 

+am,~Xl~:'Ln(xs, y+)= ~T(x,,  y,)Wmn(X,, Y,). 
S =  1 S =  I 

(4) 

Thus, the parameters of the piecewise-polynomial approximation of the boundary perturba- 
tions are determined as a result of solving Eq. (3) or (4). 

Now consider the determination of the spectral influence functions of boundary perturba- 
tions in the nonsteady case, approximating the heat-conduction equation using animplicit 
finite-difference scheme 

AT(h) I T(k) = 1 T(n ~) T(h)lri =f~k), (5) 
A Fo A Fo 

where  AFo i s  t h e  d i m e n s i o n l e s s  t ime  s t e p ;  k i s  t h e  number of  t h e  t ime  s t e p .  

The output signal for the k-th instant of time is written in the form of the two com- 
ponents 

The first component 

m ni 
T ~"' (x, y) = ~ ~ o~.,w~k, t.  V(*~ , - ] - - t i  ~ ,  y ) +  (x, y). 

t=l l=0 (6) 

m ni 

a(h)Im(h)(x, Y) c h a r a c t e r i z e s  t h e  r e a c t i o n  o f  t h e  o b j e c t  to  t h e  bound-  X X ,i--,i 
i= 1 /=0 

ary perturbation, while the second v(k)(x, y) characterizes the reaction to the initial per- 
turbations -- the temperature at the (k -- l)-th instant. 

The spectral influence function Wij(k)(x, y) is found as a result of solving Eq. (5) for 
the k-th time step, with zero initial and boundary conditions and a specified j-th spectral 
component of the boundary perturbation of the i-th section of boundary. The function V(k)(x, 
y) is determined from the solution of Eq. (5) with zero boundary perturbations and known 
initial perturbations. 

For constant AFo and a linear formulation of the problem, the spectral influence func- 
tions are unchanged from step to step, since they depend on the geometry of the object, the 
thermophysical characteristics, and the magnitude of the time step. 

In solving nonlinear problems, the equation 

0T Cv (T) - -  = V [~ (T) vT] 
Or 

i s  t r a n s f o r m e d  u s i n g  t he  K i r c h h o f f  s u b s t i t u t i o n  

T 

O-- .!" X(T) dT 
0 
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Fig. i. Mean square deviations of identified surface 
temperatures from their specified (accurate) values 
for various cooling rates: i) ~ = 0.25; 2) i; 3) 3; 
4) 5. 6 n, %. 

to an equation of the form 
! 0@ 

A@---- 
a (8) at 

which, after applying the implicit finite-difference scheme, coincides with Eq. (5), except 
for the notation, and the remainder of the solution within the limits of the time step, with 
boundary conditions of the first and second kind, is actually no different from the solution 
of the problem in the linear formulation. 

The procedure for finding Wij is no different from that described above, but an iterative 
process with respect to the refinement of Wij (x, y) is applied at each time step, while the 
expression for determining 0 is analogous to Eq. (6), since a(@) is unchanged within the limits 
of the iteration. 

The approach here proposed -- determining the spectral influence functions of the bound- 
ary perturbations -- is such that, while gathering information on the distributed boundary per- 
turbations, the accuracy of their approximation is simultaneously increased (with the same 
volume of the initial information). In addition, decreasing the number of parameters to be 
determined improves the conditionality of the problem. 

The spectral influence functions may be found both by numerical methods (for example, in 
hybrid systems [6])and at an analytical level using the regional-structure method [7]. 

The division of the boundary of the given region into sections is determined, on the 
one hand, by the specific geometry of the object and the position of the observation points 
and, on the other, by the need to decrease the order of the approximating polynomial (within 
the limits of the section, a polynomial of lower order may be used than for the whole sur- 
face). The need arises because the approximation of the dependences to be identified by high- 
order polynomials may lead to instability of the solutions obtained [i, 4]. 

The efficiency of the above-described method is illustrated by the solution of a model 
nonsteady problem of determining the boundary thermal perturbations for a rectangular prism 
(with side ratio 1:2) using the finite-difference method. At the boundaries of the given 
region, temperatures are specified: T(0, y, Fo) = (0.4 + 3.6y)exp(--yFo), T(x, i, Fo) = 4(1- 
x)2exp(--yFo), T(2, y, Fo) = (0.4 + 3.6y)exp(--yFo), T(x, 0, Fo) = 0.4exp(--yFo); the initial 
conditions are taken in the form of the solution of the same problem in a steady formulation 
with the same boundary problems. The results of the thermophysical experiment are simulated 
by the temperature values obtained at the points PI(0.1, 0.2); P2(0.1, 0.5); P3(0.1, 0.8); 
P4(0.2, 0.9); P,(I.0, 0.9); P6(i.8, 0.9); P7(1.9, 0.8); Pe(l.9, 0.5); P0(l.9, 0.2); P:o(l.8, 
0.I); P11(I.0, 0.i); P12(0.2, 0.i) in solving the direct problem. 

Analytical functions of the surface temperature in the inverse problem are determined 
for each of the four sections at the k-th instant of time, in the form 

2 2 

T ( k > [ r ~ =  --~] a(h)uJ~j ~ , i = 1, 3 ;  T(k)ir i = __~-] a!~)xi ,  f , i = 2 ,  4 .  ( 7 )  
i = o  i = o  

The additional conditions are the continuity conditions of temperature continuity at the 
corners. The variation in mean square deviations 
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TABLE i. 
Times 

Fo 

0,1 

0,3 

0,5 

0,7 

0,9 

L0 

Parameters of the Boundary Perturbations for Different 

0,361 I 3,257 
0,361 3,257 ] 
0,296 
0,307 
0,242 
0,259 
O, 199 
O, 198 
O, 163 
O, 165 
O, 147 
o, 150 

2,666 i 
2,760 l 
2,183 1 
2,339! 
1,787 
1,812 
1,463 
1,520 
1,324 
1,390 

t/l z 

0,000 
0,000 
0,000 

--0,046 
0,000 

--0,084 
O, 000 

--0,111 
0,000 

--0,114 
0,000 

--0,114 

a20 

3,619 
3,619 
2,963 
3,021 
2,426 
2,515 
1,986 
1,899 
1,626 
1,571 
1,471 
1,428 

s 

--7,239 
--7,239 
--5,926 
--6,000 
--4,852 
--4,954 
--3,972 
--3,702 
--3,252 
--3,043 
--2,943 
--2,758 

3,619 
3,619 
2,963 
3,000 
2,426 
2,477 
1,986 
1,851 
1,626 
1,521 
1,471 
1,379 

Q40 

0,361 
0,361 
O, 296 
O, 307 
O, 242 
0,259 
O, 199 
O, 199 
O, 163 
O, 165 
O, 147 
0,151 

a41 

O, 000 
o,ooo I 
O, 000 
0,021 
0,000 
0,042 
O, 000 
0,059 
O, 000 
0,062 
0,000 
0,062 

t24~ 

0,000 
0,000 
0,000 

--0,011 
0,000 

--0,021 
0,000 

--0,029 
0,000 

--0,031 
0,000 

--0,031 

/ n 
8,~ : 1, / 1 % ,  iT(k)(P~)[r - -  r s  k) (p~)]2 

t~ ~-~ 
S=I 

of the identified surface temperatures from their specified (accurate) values over time is 
shown in Fig. I. The approximation steps Ax = Ay = AFo. 

The values of the coefficients aij (k) are shown in Table 1 (upper row: accurate values; 
lower row: derived values) for functions characterizing the surface temperature of a rectan- 
gular prism for various Fo. Here alo(k) = a3o(k); a11(k) -- a3x(k); ala(k) = a~2(k). 

The approach here proposed is especially effective in solving multiparameter IHP, since 
the identified dependences are obtained in the form of analytical functions of spatial 
coordinates, which offers great possibilities for the express analysis of the thermal state 
of objects and the solution of control problems for thermal processes. 

NOTATION 

T, temperature; x, y, z, spatial coordinates; Fo, dimensionless time; AFo, step with 
respect to the Fourier number; ~, coordinate along the boundary contour; aij, parameters of 
function of the boundary perturbations; Wij, spectral influence functions of boundary per- 
turbations; V, influence function from initial perturbations; Cv, volume specfic heat; %, 
thermal conductivity; T, time; X, cooling (heating) rate; ~n, mean square deviation; s, 
number of boundary point. 

LITERATURE CITED 

ik O.M. Alifanov, Identification of Aircraft Heat-Transfer Processes [in Russian], Moscow 
(1979). 

22 L.A. Kozdoba and P. G. Krukovskii, Methods of Solving Inverse Heat-Conduction Problems 
[in Russian], Kiev (1982). 

3, Yu. M. Matsevityi, V. E. Prokof'ev, and V. S. Shirokov, Solution of Inverse Heat-Conduc- 
tion Problems on Electrical Models [in Russian], Kiev (1980). 

4. Yu. M. Matsevityi and A. V. Multanovskii, Identification in Heat-Conduction Problems [in 
Russian], Kiev (1982). 

5. D.F. Simbirskii, Temperature Diagnostics of Motors [in Russian], Kiev (1976). 
6. Yu. M. Matsevityi and O. S. Tsakanyan, Hybrid Computational Systems for Investigating 

Physical Fields [in Russian], Kiev (1983). 
7. A.P. Slesarenko, "Development of an algebraic--logical method and its application to 

multidimensional nonlinear heat-conduction problems for homogeneous and composite media," 
Author's Abstract of Doctoral Dissertation, Moscow (1984). 

1094 


